

Toolbox for Safety Improvements for Urban Arterials

By Snehamay Khasnabis Professor of Civil Engineering

Chirag Safi Sabyasachee Mishra Graduate Research Assistants

Department of Civil Engineering Wayne State University Detroit, MI 48202

for

Michigan Department of Transportation September 2006

MDOT Project Manager: Will Mathies

CONTENTS

Page No

List of Tables	ii
List of Figures	iii
List of Tables for Appendix-A	
A TOOLBOX FOR SELECTING SAFETY IMPROVEMENT PROJECTS	<u>s</u>
	1
Identification of Hazardous Locations	2
Review of Accident Records	3
Development of Condition and Collision Diagram	7
Predominant Crash Patterns and Countermeasures	7
Determination of Crash Reduction Factors (CRF)	7
Determination of Mutually Exclusive Alternatives	11
Conduct Statistical Test of Significance	44
Economic Evaluation of Mutually Exclusive Alternatives	15
Project Implementation	20

References	21
Appendix-A	22
References for Appendix-A	66
Acknowledgement	69

LIST OF TABLES

Table Number Table: 1	Descriptions Selected 36 Intersections	Page Number 4
Table: 2	Domain of Crash Locations	5
Table: 3	Identification of Hazardous Locations	6
Table: 4	Database Developed Based upon Review of Crash	6
	Reports	
Table:5	Predominant Crash Patterns, Probable Causes and	10
	Countermeasures	
Table:6	Crash Reduction Factors for Proposed Countermeasures	12
Table:7	Data Format for Compiling Crash Reduction factors for	13
	Mutually Exclusive Alternatives	
Table:8	Poisson Evaluation and Savings in Crash Cost	18
Table:9	Economic Analysis Database	19
Table:10	Incremental Analysis	20

LIST OF FIGURES

Figure	Descriptions	Page Number
Number		
Figure: 1	A Sample Condition Diagram	8
Figure: 2	A Sample Collision Diagram	9
Figure: 3	Poisson Curves for Crash Evaluation	14

LIST OF TABLES FOR APPENDIX-A

Table Number	Descriptions	Page Number
Table A.1	Crash Reduction Factors For Adding Acceleration /	23
	Deceleration Lane	
Table A.2	Crash Reduction Factors For Adding All-Red Interval	23
Table A.3	Crash Reduction Factors For Adding Centerline	24
	Markings	
Table A.4	Crash Reduction Factors For Adding Edge Line	24
	Markings	
Table A.5	Crash Reduction Factors For Adding Exclusive Left-	25
	Turn Phase (Protected	
Table A.6	Crash Reduction Factors For Adding Lane General	26
Table A.7	Crash Reduction Factors For Adding Reflectorized	27
	Raised Pavement Markings	
Table A.8	Crash Reduction Factors For Adding Right Turn Lane	27
Table A.9	Crash Reduction Factors For Advance Warning Signs	28
	And Flashing Beacon	
Table A.10	Crash Reduction Factors For Attaining Progression	28
Table A.11	Crash Reduction Factors For Change In Signal	29
	Operation, From Pre-Timed To Traffic Actuated	
Table A.12	Crash Reduction Factors For Change To All-Way Stop	29
	Sign From Two-Way Stop Sign	
Table A.13	Crash Reduction Factors For Channelization	30
	Intersection	
Table A.14	Crash Reduction Factors For Construct Interchange	30
Table A.15	Crash Reduction Factors For Flatten Side-Slope	31
	(General)	
Table A.16	Crash Reduction Factors For Flatter Grade (Vertical	31
	Curve)	
Table A.17	Crash Reduction Factors For Horizontal Alignment	32
	Changes (General)	
Table A.18	Crash Reduction Factors For Improvement Horizontal	32
	And Vertical Curve	

Table A.19	Crash Reduction Factors For Improvement Of Signal Timing (General)	33
Table A.20	Crash Reduction Factors For Improvement Of Vertical Alignment (General)	33
Table A.21	Crash Reduction Factors For Improvement Of Yellow Change Interval	34
Table A.22	Crash Reduction Factors For Improving Pavement Condition	34
Table A.23	Crash Reduction Factors For Improving Sight Distance	35
Table A.24	Crash Reduction Factors For Increase In Lane Width	35
Table A.25	Crash Reduction Factors For Increase Turn Lane Length	36
Table A.26	Crash Reduction Factors For Increase Turning Radius	36
Table A.27	Crash Reduction Factors For Installation Of 12-Inch	37
	Lenses	
Table A.28	Crash Reduction Factors For Installation Of Guardrail	37
	At Bridge	
Table A.29	Crash Reduction Factors For Install Median Barrier	38
	(General)	
Table A.30	Crash Reduction Factors For Installation Of Optically	39
	Programmed Signal Lenses	
Table A.31	Crash Reduction Factors For Installation Of Rumble	39
	Strips	
Table A.32	Crash Reduction Factors For Installation Of School	40
	Zone Signs	
Table A.33	Crash Reduction Factors For Installation Of Signal	41
	(General)	
Table A.34	Crash Reduction Factors For Installation Of Stop Ahead	42
	Sign	10
Table A.35	Crash Reduction Factors For Installation Of Two-Way	43
	Left-Turn Lane In Median	
Table A.36	Crash Reduction Factors For Installation Of Variable	44
T 11 4 27	Message Sign	
Table A.37	Crash Reduction Factors For Installation Of Visors Or	

44

	Back-Plates	
Table A.38	Crash Reduction Factors For Installation Of Warning	45
	Signs In Advance Of Curves	
Table A.39	Crash Reduction Factors For Installation Of Yield Sign	45
Table A.40	Crash Reduction Factors For Installation Of Proper	46
	Signs	
Table A.41	Crash Reduction Factors For Installation Of	46
	Improvement Roadway Lighting	
Table A.42	Crash Reduction Factors For Installation Of Raised	47
	Median Near Intersection	
Table A.43	Crash Reduction Factors For Installation Of Red Light	47
	Running Cameras And Its Warnings Signs	
Table A.44	Crash Reduction Factors For Installation Of Actuated	48
	Signal Control	
Table A.45	Crash Reduction Factors For Intersection Lighting	48
Table A.46	Crash Reduction Factors For Left Turn Protected Only	49
	From Protected/Permissive	
Table A.47	Crash Reduction Factors For Modification In Signal	50
	Phasing	
Table A.48	Crash Reduction Factors For Modification Of Entrance /	50
	Exit Ramp	
Table A.49	Crash Reduction Factors For Offset Opposing Left Turn	51
	Lane	
Table A.50	Crash Reduction Factors For Pavement Markings	51
Table A.51	Crash Reduction Factors For Prohibiting Left Turns	52
Table A.52	Crash Reduction Factors For Prohibiting On Street	53
	Parking	
Table A.53	Crash Reduction Factors For Prohibiting Right Turn On	54
	Red	
Table A.54	Crash Reduction Factors For Protected Permissive Left	54
	Turn Phase Addition	
Table A.55	Crash Reduction Factors For Provide Left-Turn Lane	55

	(With Signal)	
Table A.56	Crash Reduction Factors For Provide Left-Turn Lane	55
	(Without Signal)	
Table A.57	Crash Reduction Factors For Realignment (General)	56
Table A.58	Crash Reduction Factors For Reconstruction Curve	56
Table A.59	Crash Reduction Factors For Reduction In Speed Limit	57
Table A.60	Crash Reduction Factors For Relocating Fixed Objects	57
Table A.61	Crash Reduction Factors For Relocating Some Drive	58
	Ways	
Table A.62	Crash Reduction Factors For Removing Fixed Objects	59
Table A.63	Crash Reduction Factors For Removing Unwarranted	60
	Signal	
Table A.64	Crash Reduction Factors For Roundabout	60
Table A.65	Crash Reduction Factors For Signal Progression	61
	(General)	
Table A.66	Crash Reduction Factors For Skid Treatment With	61
	Overlay	
Table A.67	Crash Reduction Factors For Superelevation Correction	62
Table A.68	Crash Reduction Factors For Upgradation Of Guardrail	62
Table A.69	Crash Reduction Factors For Upgradation Of Signal	63
Table A.70	Crash Reduction Factors For Upgrade Signals / Mast	64
	Arm Signal Installation	
Table A.71	Crash Reduction Factors For Shoulder Widening	65

A TOOLBOX FOR SELECTING SAFETY IMPROVEMENT PROJECTS

A toolbox for selecting safety improvement projects at urban intersections is presented in this section with the object of providing a set of guidelines for MDOT in implementing its highway safety program. This toolbox indeed represents a synthesis of the research presented in the earlier chapters of this report.

Traffic accidents claim the lives of more than 40,000 people in the U.S. every year. Michigan is the eleventh highest state in roadway fatalities in the U.S., with more than 1,200 fatalities per year. The state trunk line in Southeast Michigan is characterized by high congestion and a large number of crashes compared to other regions.

The state of Michigan covers 122,000 miles of highways that generate approximately 101.8 billion vehicle miles of travel annually. In the year 2004, there were 373,028 highway crashes in Michigan, which include fatalities, injuries and property damages. Highway crashes in the state have been declining over the years, thanks to the hazard mitigation efforts undertaken by MDOT in cooperation with local and regional agencies. In spite of this decline, the economic loss in the state resulting from highway crashes is estimated to exceed \$9.5 billion annually.

A review of state-wide crash data by roadway functional classification shows that arterials and collectors are associated with a large number of fatal crashes. For example, 64% of the 1,055 fatal crashes in the state occurred at arterials and collectors in 2004. By contrast, only 10% of these crashes occurred at freeways and expressways, even though these are among the most heavily traveled facilities in the state. These figures reveal that highway facilities with better design features are likely to be safer compared to other roadways.

Traffic crashes occur at various roadway locations. An analysis of the crash data by location shows that approximately 75% of all fatal crashes in the state occur at intersections. Also, 48% of all crashes typically occur at signalized intersections. The total number of crashes in the southeast Michigan region for the year 2004 is more than 150,000, a large fraction of which occurred at intersections. The region has more than 25,000 intersections on its state trunk lines. Further analysis of the crash data showed that:

- approximately 1,167 intersections experienced more than 10 accidents during the last three-year period.
- 463 of these 1,167 intersections experienced more than 30 accidents during the same period.
- Of these 463 intersections, more than 300 experienced accident severities exceeding 0.25, where severity is defined as the ratio of injury accidents to total accidents.

Clearly, any action plan targeted to reduce losses due to highway crashes should focus on intersections, signalized or stop-controlled.

The process described in this section is "driven" by crash data, and is built upon the premise that intersections that experience a large number of crashes that inflict high levels of injuries are hazardous. The authors realize that this process may not necessarily "capture" all hazardous sites in the study area. Accidents, by their very nature, are random events, and there may be sites that are hazardous, and yet have not experienced a large number of accidents ($\underline{1}$, $\underline{2}$). The authors hence recommend that accident records over a sustained period, a minimum of three years, be considered in selecting hazardous sites. The following steps are considered critical in selecting safety improvement projects.

- 1. Identification of Hazardous Sites
- 2. Review of Accident Reports
- 3. Development of Condition and Collision Diagram
- 4. Identification of Probable Causes and Development of Countermeasures
- 5. Determination of CRF's
- 6. Development of Mutually Exclusive Alternatives
- 7. Statistical Evaluation
- 8. Economic Analysis of Mutually Exclusive Alternatives
- 9. Project Identification

Identification of Hazardous Locations

In Chapter 2 of this report, a brief review of two broad categories of techniques for selecting high accident locations was presented:

- Conventional techniques
- Emerging techniques

Note, all of these techniques are dependent upon accident data in a macroscopic (aggregate) sense, and are based upon the assumption of a high correlation between accidents and hazards. Under conventional techniques, a set of procedures ranging from one dimensional Frequency Method to two dimensional Rate-Frequency and other methods were discussed. While each of these methods has its specific advantages/disadvantages, the selection of a particular method for a given program depends primarily upon the availability of data. For example, all rate-based techniques (Accident Rate, Rate Frequency, Hazard Index Method, and Rate Quality Control), require exposure or volume data on all streets comprising the intersection ($\underline{3}$). Thus, a rate-based technique cannot be used in situations where such comprehensive volume data is not available.

Among the emerging techniques, the Empirical Bayes (EB) Method appears to have high promise because of its ability to address the regression-to-the-mean effect, a factor that is considered a serious disadvantage to the conventional techniques (<u>4</u>). However, EB

techniques are still under development, and require the development of site-specific Safety Program Functions (SPF), that must be properly calibrated with local data. Further, the development SPF's requires the availability of exposure data. Little research is reported in the literature on the transferability of SPF's from one region to another.

In the case studies presented earlier in this report, the authors used a two dimensional Frequency Severity Method, based upon availability of data and other project constraints. While one dimensional techniques based upon Frequency and Severity have been used in the past, their integration into a two-dimensional matrix will ensure that sites with high frequency and/or high accident severity are captured in the analysis. Further, for the study area, it was found that the incidence of high frequency and high severity at a given site is a rare event. The use of the two-dimensional technique proposed by the authors is designed to ensure that sites with high frequency and/or high severity are identified ($\underline{5}$). The use of the EB technique, although promising, was not considered feasible because of a need to develop SPF's that require a substantial database for calibration and validation.

In Chapter 3, the authors demonstrate how the initially identified 463 intersections (with a frequency of 10 accidents/year) were narrowed down to 36 critical sites, with 28 sites based upon frequency, and 8 based upon severity (Table 1). The procedure presented can be used to identify different levels of critical sites, depending upon the specific study needs. Tables 2 and 3 are suggested formats for databases that can be created from crash and exposure data, and that can be used to identify critical sites following the conventional techniques. The suggested two-dimensional Frequency-Severity Method is a part of the conventional techniques, even though its actual use is rare.

Review of Crash Records

The database contained in the Safety Management System (SMS) of MDOT's Transportation Management System (TMS) contains detailed information on all reported accidents, as recorded on site. This information should be initially reviewed for consistency and then be used for developing collision diagrams. Collision diagrams, in conjunction with condition diagrams are useful in identifying possible patterns, and for developing countermeasures, as discussed below. Table 4 is shown as a sample of database format based upon a review of crash data.

Ideally, all accident records at a given site should be reviewed. For the Detroit metro area, the highest number of accidents reported at a given site over the 3 year period (2001-2004), is approximately 370, requiring as many UD-10 reports to be reviewed for that site. If this is not possible because of project constraints, the authors suggest that all fatal and injury accidents be reviewed, and PDO crashes be reviewed on a sampling basis (a minimum of 20% sample is recommended).

Site Number	Selection Type	TRKNAME	XRDNAME	тот	INJ	FAT	SEV
1		M59 HALL RD	SCHOENHERR RD	292	57	1	0.199
2		M59 HALL RD	HAYES RD	202	41	0	0.203
3		M3 GRATIOT	PROMENADE ST	221	43	0	0.195
4		M59 HIGHLAND	AIRPORT RD	213	41	0	0.192
5		M97	METRO PKWY	184	60	0	0.326
6		M3 GRATIOT	MASONIC DR	159	54	0	0.34
7		US24	TEN MILE RD	150	49	0	0.327
8		M59 HALL RD	GCRFIELD RD	176	39	0	0.222
9		M59 HIGHLAND	CRESCENT LAKE RD	172	39	0	0.227
10		M8 DAVISON	W DAVIS/N 175	166	39	0	0.235
11	~	M153 FORD RD	WAYNE RD	166	41	0	0.247
12	anc	US24	GODDARD RD	159	38	0	0.239
13	ane	US24	VAN BORN RD	159	33	0	0.208
14	Le L	US24	FRANKLIN RD	154	38	0	0.247
15	Based on Frequency	M39 SOUTHFLD	DIX TOLEDO HWY	151	36	0	0.238
16	o pe	M97	15 MILE RD	138	43	0	0.312
17	ase	M153 FORD RD	N MERCURY DR	133	39	1	0.301
18	Ш	US24	FRANKLN,CIVIC CNTR	145	38	0	0.262
19		M53 VAN DYKE	7 MILE RD	137	36	1	0.27
20		M102 8 MILE	DEQUINDRE AVE	136	38	0	0.279
21		US24	196 SERVICE DRIVES	147	31	0	0.211
22		M59 HIGHLAND	WILLIAMS LAKE RD	140	30	0	0.214
23		M1 WOODWARD	S WOODWARD AVE	140	30	0	0.214
24		M150	HAMLIN RD	140	32	0	0.229
25		M153 FORD RD	INKSTER RD	139	34	0	0.245
26		M24	HARMON ST	138	32	0	0.232
27		M3 GRATIOT	12 MILE RD	137	33	0	0.241
28		US24	MAPLE RD	134	27	0	0.201
29		US12 MICH	JOHN DALY RD	40	17	1	0.45
30	rity	M29 23 MILE	SEATON RD	34	15	1	0.471
31	9V6	M97 HOOVER	GREINER AVE	32	15	0	0.469
32	Based on Severity	M59 HIGHLAND	WHITTIER ST	32	14	0	0.438
33	1 or	M59 HIGHLAND	TEGGERDINE RD	76	32	0	0.421
34	seo	M153 FORD RD	ARTESIAN, AUTO CLUB	38	15	1	0.421
35	Ba;	M3 GRATIOT	MARTIN ST	95	39	0	0.411
36		US24	KING RD	62	25	0	0.403

Table 1: Selected 36 Intersections

Table 2: Domain of Crash Locations

Ger	neral Information		Site Information									
Analyst Agency Date Performed Analysis Period			-	Area Type Location Type (s) Jurisdiction Analysis Year								
		l	input Data									
Site Number	Control Type	CS Name	Crash Frequency	Fatality	Injury	PDO	SEV					
	(A). Signalized Intersections											
	1											
	2											
	k (B) Stop Signs											
	(B). Stop Signs											
	2											
	k											
	(C) Mid-Blocks											
	1											
	2											
	•											
	k											
	(D) Freeway											
	1											
	2											
	k	D*-										
		Prid	rity Selecti	on	1							
	ority	Crash Frequency	Fatality	Injury								
Priority-1					Comments							
Priority-2												
Priority-3					-							
Priority-4	Priority-4											

	IDENTIFICATION OF HAZARDOUS LOCATIONS													
1	2	3	4	5	7	8	9							
Site Number	AADT	AADT Accident Frequency		Frequency Rate	Rate Quality Control	EPDO	ISA	Severity						
1														
2														
Ν														
			C	RITICAL	VALUE									
Xc														

Table 3: Identification of Hazardous Locations (Ref, 5)

Table 4: Database Developed Based upon Review of Crash Reports

	IDENTIFICATION OF HAZARDOUS LOCATIONS																						
1	2	3	4	5		6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Crash Frequency Surface Type For Majority of Crashes						Crash Type																	
Site Number	Fatality	Injury-A	Injury-B	Injury-C	PDO	Total	lcy	Wet	Dry	Other	Rear-End	Right-Angle	LTHO	SS-SD	OD-SS	Head On	Fixed Object	Pedestrian	Backed Into	Parked Vehicle	Driveway Related	Other	Total
1																							
2																							
3																							
4																							
5																							
6																							
7																							
8																							
9																							
10																							
k																							
TOTAL																							

Development of Condition and Collision Diagram

A condition diagram is designed to depict the geometric (number of lanes, configurations, etc.), operational (signals, other traffic control devices, etc.), and locational features (fixed objects, utility poles) of the intersection. A collision diagram, on the other hand, provides a visual representations of the types of accidents, their exact locations, all plotted on the locational geometry. A collision diagram depicting all accidents by type (severity, PDO), along with the condition diagram usually leads to the identification of probable causes, and the development of countermeasures. Figures 1 and 2 show typical condition and collision diagrams that should be developed for safety improvement programs.

Predominant Crash Patterns and Countermeasures

Predominant crash patterns are those, which comprise a very high percentage of total crashes. These can be identified from the collision diagrams. Some of the predominant crashes identified for the intersections studied in this research are:

- Rear End Crashes
- Angle Crashes
- Left Turn Head on Crashes
- Sideswipe Same Direction Crashes
- Driveway related Crashes

Once predominant crash patterns are identified, these should be related to the geometric and operational features of the intersection. This process of relating crash patterns to operational and geometric features should lead to the identification of probable causes and countermeasures. Countermeasures should be selected based upon information available in the literature. Countermeasures can be designed either to prevent crashes or to reduce severity of crashes. Table 5 shows a typical data format relating predominant crash patterns to probable causes and countermeasures.

Determination of Crash Reduction Factors (CRF)

Crash Reduction/Modification Factors (CRF/CMF) are used in safety improvement projects to predict expected reductions in the number of accidents (all, injury, PDO) resulting from the installation of engineering countermeasure. Before and after study methods and cross-sectional method have been used to develop CRF's, the former one being most widely used. Literature review clearly shows that states use various sources of information in developing CRF's. Some states evaluate their safety improvement projects to estimate reduction in accidents, while others utilize factors developed by other states or agencies. However, a limited number of state DOTs have considered the effect of more than one type of improvement on accident reduction factor at a location. A complete discussion of the development of CRF's/CMF's has been presented in Chapter 2 of this report.

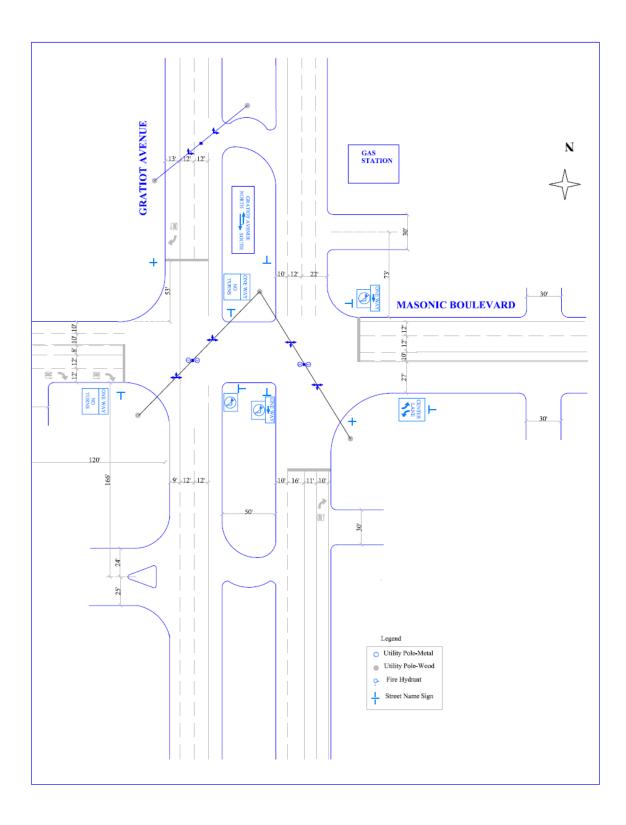


Figure 1: A Sample Condition Diagram

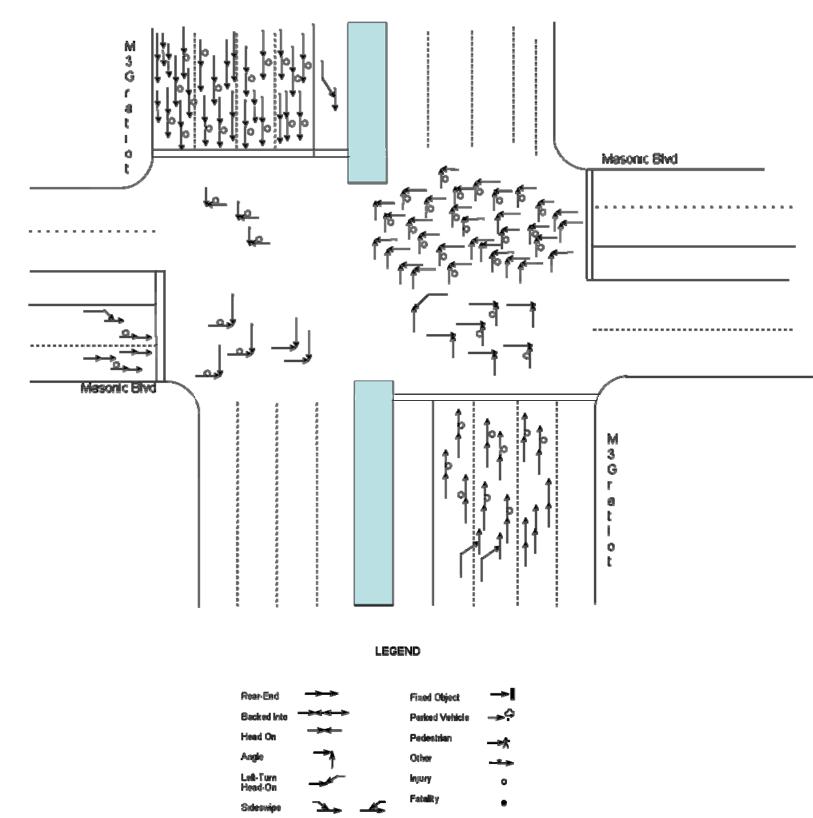


Figure 2: Sample Collision Diagram

	PRDOMINANT	CRASH PATTE		E CAUSES AND CO	DUNTERMEASU	RES		
				Crash Patterns				
Site Number	P-1		P	-2	P-3		Coun	termeasures
	Probable Causes	i ii iii iv v	Probable Causes	i ii iii iv v	Probable Causes	i ii iii iv v	iiiiiiiivv	
2	Probable Causes	i ii iii iv v	Probable Causes	i ii iii iv v	Probable Causes	i ii iii iv v	ii iii iii iv v	
•								
k	Probable Causes	iiiiiiivv	Probable Causes	i ii iii iv v	Probable Causes	i ii iii iv v	ii iii iii iv	
Comments								

Table 5: Predominant Crash Patterns, Probable Causes and Countermeasures

Based upon the review of literature presented above, a comprehensive list of type of countermeasures and respective reduction factors in percentage has been prepared. Appendix A (Tables A.1 to A.71) summarizes CRF's from various sources according to type of safety improvements, which has been divided in the following eight major categories:

- Channelization Improvements
- Construction/Reconstruction Improvements
- Illumination Improvements
- ITS Related Improvements
- Pavement Improvements
- Pedestrian Safety Improvements
- Realignment
- Regulation Improvements
- Roadway And Traffic Sign Improvements
- Roadway Delineation And Pavement Marking Improvements
- Separating Devices
- Traffic Signal Improvements

The authors suggest the CRF database presented in Appendix A be used in safety evaluation, and the list be updated periodically by MDOT. Further, in the case when CRF's for the same/similar countermeasure are available from different sources, a conservative approach should be taken. This would imply selecting the lowest CRF, or the mean of the available data. If the data shows the presence of 'outliers' these may be discarded at the discretion of the user, as the 'outliers' may have a tendency to 'distort' the mean. The use of CRF for single countermeasure or multiple countermeasures has been demonstrated in Chapter 5. Table 6 shows a typical representation of CRF data for countermeasures selected for different sites.

Determination of Mutually Exclusive Alternatives

Many times it may be possible to identify a number of mutually exclusive alternatives, each alternative consisting of a set of countermeasures. It is generally recommended that all viable alternatives should be considered, and the selection of the optimal project should be based upon consideration of all project costs and benefits. Further, the project that costs the least is not necessarily the best one, and the one that costs the most should not necessarily be eliminated. Once the framework of costs and benefits are established, all costs and benefits associated with a given alternative within the defined framework should be considered. The project that provides the highest benefit to the tax-payer should be the one selected for implementation.

Additionally, the project benefits (measured in terms of savings in accident costs) should be statistically significant, compared to the current levels of accidents at the project site. Thus two independent evaluations (statistical and economic) are involved in the final project selections. These are discussed in the next section. Before these two evaluations are completed, one must identify a set of viable alternatives, each alternative consisting of a single or multiple countermeasures. Table 7 shows a suggested format for compiling information on mutually exclusive alternatives

CRASH REDUCTION FACTOR											
Site Number		Proposed ntermeasures	CRF Associate with Countermeasur								
	C-1	:	CRF-1								
	C-2	:	CRF-2								
	C-3	:	CRF-3								
1	C-4	:	CRF-4								
	C-1	:	CRF-1								
	C-2	:	CRF-2								
	C-3	:	CRF-3								
2	C-4	1:	CRF-4								
	C-1	1:	CRF-1								
	C-2	:	CRF-2								
	C-3		CRF-3								
3	C-4		CRF-4								
		•									
			•								
•			•								
•			•								
· ·		·	•								
· ·			•								
•			· ·								
· ·		· · · · · · · · · · · · · · · · · · ·	•								
· ·			•								
· ·			•								
· .											
	C-1	:	CRF-1								
k	C-2	:	CRF-2								
	C-3	:	CRF-3								
	C-4	:	CRF-4								
Comments											
				_							

Table 6: Crash Reduction Factors for Proposed Countermeasures

Site Number	Alternatives	(CRF	Combined CRF
		CRF-1 =		
		CRF-2 =		
	A-1	CRF-3 =		
		CRF-k =		
		CRF-1 =		
		CRF-2 =		
1	A-2	CRF-3 =		
-				
		CRF-k =		
		CRF-1 =		
		CRF-2 =		
	A-3	CRF-3 =		
	11.5			
		CRF-k =		
•				
•				
•	A-1	CRF-1 =		
		CRF-2 =		
		CRF-3 =		
		CRF-k =		
		CRF-1 =		
		CRF-2 =		
Ν	A-2	CRF-3 =		
		CRF-k =		
		CRF-1 =		
		CRF-2 =		
	A-3	CRF-3 =		
		-		
		CRF-k =		
Formulae Us	ed for Combi	ned CRF =		
		Comments		
		-		
		-		
L				

 Table 7: Data Format for Compiling Crash Reduction factors for the Mutually Exclusive

 Alternatives

Conduct Statistical Test of Significance

The purpose of this test is to ensure that the projected reduction in crashes derived through the use of CRF's after the implementation of the countermeasures identified is statistically significant at a specified level. In other words, this test is likely to attest that the predicted reduction is not caused by random error, and that it is indeed attributable to the countermeasure or the set of countermeasures contained in each alternative.

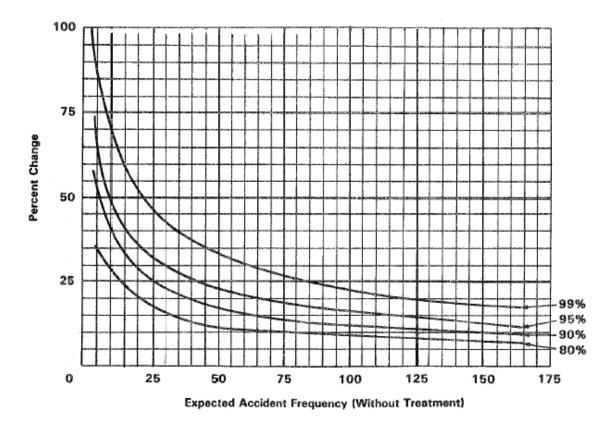


Figure 3: Poisson Curves for Crash Evaluation (Ref: 3)

The above test is accomplished by the use of Poisson curves shown in Figure 6.2, for various levels of confidence. The authors recommend the use of a 90% level of confidence. If, for example, the expected accident frequency without the treatment is 50 per year, then at a 90% level, there must be a minimum 17.5% reduction in accidents/year, in order for the countermeasure(s) to be statistically significant in reducing crashes. Further, the above statement can be asserted with a 90% confidence, implying that there is a 10% chance that the above conclusion can be erroneous. Note that if the expected frequency without any treatment is 75, it will take approximately 13.5% reduction in crashes for a similar statistical conclusion to be derived. As Figure 3 shows, with higher frequencies without treatment, the required percentage of reduction is smaller initially, but ultimately "flattens" out, as the frequency increases. Further, higher levels of confidence are associated with higher percentage changes in crashes.

example, in the cases 50 crashes/year without treatment, it will take a 32.5% reduction for the improvement to be significant at 99% level of confidence, implying that there is only 1% chance that this above conclusion is erroneous.

Lastly, the Poisson analysis discussed above can be conducted either at the crash level, or at the injury level (fatality, injury and PDO). Sample tables for conducting Poisson analysis are presented in Table 8. When dealing with a set of mutually exclusive alternatives, those alternatives that do not qualify the statistical test should be eliminated from further analysis. Only those alternatives, that qualify, should be considered for economic analysis, as discussed in the next step. These are termed as viable alternatives.

Economic Evaluation of Mutually Exclusive Alternatives

Economic analysis is a critical component of a comprehensive project or program evaluation methodology used to select safety improvement projects. It allows highway agencies to identify, quantify, and value the economic benefits and costs of the project over the life of the project. The five economic analysis techniques, that are used by different states, B/C Ratio, IRR, C/E, NPV and TOR have been discussed in detail in Chapter 2.

While the five techniques described above are likely to lead to the same solution, there are state to state variations in the use of a specific technique, that is determined by factors such as availability of data, the intended use of the results, and to some extent, the prevailing practice in the state. In Michigan, the prevailing practice has been the use of the Pay Off Period or Time of Return technique, and the project that pays off for its investment earlier than the project life, essentially qualifies for further consideration.

Hence, this toolbox only presents the procedures to be followed in applying the TOR technique in the evaluation of highway safety projects.

The selection of the best project from a group of mutually exclusive alternatives that all meet the pay-off period criterion, is not however, a straight forward process. Further, when a specific budget for the program is specified, project selection from a large number of independent sites, each of which may have a number of mutually exclusive alternatives, can be a challenging task for the agency. Since a budget is not specified in the study, the incremental cost analysis technique is recommended in selecting the best alternatives from a mutually exclusive set.

Lastly, as illustrated in Chapter 5, the benefits associated with the safety projects, do not only include the savings in accidents or reductions in severity, but also may include operational benefits including savings in travel time, road user costs, etc. MDOT has, in the past, used a conservative approach in benefit assessment, and has only considered safety benefits, the contention being that a safety project selected should be justified on the basis of safety alone, and other operational benefits, if any, are not to be used in justifying the projects. Hence, the guidelines presented here are based upon the consideration of safety benefits only. A total of twenty case studies on economic analysis have been presented in Chapter 5. Of these, five case studies include the application of all five techniques, using both safety and operational benefits. The remainder fifteen case studies show the application of TOR technique using safety benefits only.

A brief theoretical foundation of the TOR techniques is presented below. The following symbols are used in the discussion.

(A/F) = Sinking Fund Factor (A/P) = Captial Recovery Factor *EUAB* = Equivalent Uniform Annual Benefit (\$/year) *EUAC* = Equivalent Uniform Annual Cost (\$/year) CC = Initial Cost (assumed to be incurred one year prior to operation) i = Interest rate used (%, annual) *MARR* = Minimum Attractive Rate (%, annual) NPW = Net Present Worth = PWOB - PWOC (\$)t = Project life (years) n = Pay off period (PP)(years) n_i = Year when periodic expenditures are incurred ($n_i < t$) (P/A) = Present Worth Factor (Uniform Series) (P/F) = Present Worth Factor (Single Payment) (PP) = Pay off Period (years)*PWOB* = Present Worth of Benefit (\$) *PWOC* = Present Worth of Cost (\$) S =Salvage Value (\$) R_{om} = Recurring operating and Mtc. Cost (annual) P_{om} = Periodic Operating and Mtc. Cost B = Annualized Project Benefits (savings in crashes) g = Traffic growth rate in %

The TOR technique is used when "the time taken by the project to pay for itself" is the desired answer. The algorithm used is based upon the premise that the pay-off period is the period at which the Net Present Worth (NPW) of the project (being the difference between the Present Worth of Cost and the Present Worth of Benefit) is zero at a specific interest rate. Alternatively, the pay-off period is the period at which the Net Annual Worth (NAW), being the difference the EUAB and the EUAC is zero. Using the latter definition, the algorithm is:

$$NAW = 0$$

$$EUAB = EUAC$$

$$R_{om} + P_{om} \left[\left(\frac{P}{F} \right)_{n=1} + \left(\frac{P}{F} \right)_{n=2} \dots + \left(\frac{P}{F} \right)_{n=n} \right] \times \left(\frac{A}{P} \right)_{n=?} + CC \left(\frac{F}{P} \right)_{n=1} \left(\frac{A}{P} \right)_{n=?} - S \left(\frac{A}{F} \right)_{n=t}$$

$$= B \left(\frac{P}{A} \right)_{g} \times \left(\frac{A}{P} \right)_{n=?}$$

The rationale is if a project pays for itself earlier than the period the project is expected to last, it essentially provides "free" service to the investor for the difference between the two periods. If, on the other hand, it takes longer to pay for itself, the additional period is a "liability" to the investor.

The above equation can be solved either manually or through the use of the Excel software. The manual process entails a trial and error approach where the number of years is changed systematically, until a solution to the above equation is reached. Many a time, the 'convergence' of the final solution may take a number of iterations. Hence, the solution using the Excel software is recommended.

When dealing with mutually exclusive alternatives using the TOR technique, the procedure to be followed can be outlined as follows:

- Identify all candidate alternatives in increasing order of investment cost.
- Compute the Pay off Period of each alternative by itself (termed as TOR_{absolute})
- Eliminate from further consideration these alternatives, whose TOR_{absolute} is more than the service life. For those alternatives, the safety benefits are not high enough to pay for their cost within the project life, and hence become a "liability" to the tax-payer beyond the service life.
- Realign the remaining alternatives (termed viable alternatives) in increasing order of their investment cost.
- Use the "Defender Challenge" technique, where the incremental cost, associated with increasingly higher-cost projects are to be evaluated 'pair-wise,' relative to the incremental benefits generated. For each comparison pair, the Pay-off Period, needed to pay for the incremental cost by way of the incremental benefits generated (termed as the TOR_{marginal}) is to be computed. The higher investment cost project is justified if the PP marginal is less than the service life. Otherwise, the higher-investment project is to be eliminated.
- This process is to be continued until the last alternative (i.e. the highest-cost investment) is analyzed.
- Select the alternative with the highest investment cost for which
 - (TOR)_{absolute} < Service life
 - (TOR)_{marginal} < Service

Table 6.9 and 6.10 show the proposed data collection formats for the suggested methodology.

						PO	SSON E	VALUA			AVING		ASH CC	OST						
1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
					Fatality				Injury PDO							Total Savings				
Site Number	Alternative	Before Period Crashes (B)	After Period Crashes (A)	(B-A)	% Change (B-A)/B	Significance (Poisson Curves)	Savings in Crash Cost (Source: NSC)	Before Period Crashes (B)	After Period Crashes (A)	(B-A)	% Change (B-A)/B	Significance (Poisson Curves)	Savings in Crash Cost (Source: NSC)	Before Period Crashes (B)	After Period Crashes (A)	(B-A)	% Change (B-A)/B	Significance (Poisson Curves)	Savings in Crash Cost (Source: NSC)	(4)*(7) + (10)*(13) + (16)*19
	A-1																			
	A-2																			
1	A-3																			
	A-k																			
	A-1																			
	A-2																			
2	A-3																			
	•																			
	A-k																			
· ·																				
k																				
Total																				
rotar	1	1	1		1		I	I	Co	mmer	nte	I		1	I	ļ	1	I		
		Si	gnifican	Cr (ash Co: Crash C	st for Fata ost for Inju	isson Test lity, (NSC) ury, (NSC) DO, (NSC)													

Table 6.8: Poisson Evaluation and Savings in Crash Cost

INFORMATION FOR ECONOMIC ANALYSIS Site Number Base Year Alternative Number Analysis Period Analysis Year Vest Charge ECONOMIC ANALYSIS SPREADSHEET 5 7 1 2 3 4 6 8 **Benefit Components** Cost Component Net Benefits Planning Crash Cost Year Initial Periodic Crash Cost Savings and Total Salvage Investment Design Cost Value Only (6)+(7)-(5) Cost Savings Cost Cost MOE TOR Comments

 Table 6.9: Economic Analysis Database

Site Number	Alternative Number	TOR _{abs}	ll Analysis TOR _{mar}	Service Life	Conclusion
	A-1				
	A-2				
1	A-3				
	•				
	A-k				
	A-1				
	A-2				
2	A-3				
					_
	A-k				
	A-1				_
	A-2				_
Ν	A-3				_
					_
	A-k				
ч.,					
Comments	-				
	_				

Table 6.10: Incremental Analysis

Project Implementation

The last step in the safety improvement program is the implementation of projects at different sites, as discussed in the earlier steps. For the economic analysis procedure, it has been assumed that the project implementation will take approximately one year. It is extremely important that actual crash data be collected for a sustained period, a minimum of three years, following the project implementation with three broad objectives:

- To assess if there has been an actual reduction in the number and severity of crashes resulting from the project and if the amount of reduction is statistically significant based upon the Poisson procedure discussed earlier
- To assess how closely the actual reduction in crashes, if any, matches the expected reduction based upon the use of the CRF values used in the analysis.
- To generate a new set of countermeasures and specific CRF values, if possible.

Reference:

- Council, F. M., D. W. Reinfurt, B. J. Campbell, F. L. Roediger, C. L Carroll, K. D. Amitabh, and J. R. Dunham, "Accident Research Manual." Highway Safety Research Center, University of North Carolina, 1980.
- "Highway Safety Evaluation: A procedural guide", FHWA-TS-81-219. National Highway Institute, Federal Highway Administration, Prepared by Goodell-Grivas Inc. November, 1981.
- "Highway Safety Improvement Program (HSIP)" User's Manual. FHWA-TS-81-218. National Highway Institute, Federal Highway Administration, Prepared by Goodell-Grivas Inc. January 1981.
- 4. World Road Association "Road Safety Manual", Recommendation from PIARC, 2003
- 5. Khasnabis, S., Safi, C. and Mishra, S. "Safety Improvements for Urban Arterials", Draft report prepared for Michigan Department of Transportation by Wayne State University, September, 2006.

APPENDIX-A

SAFETY IMPROVEMENT PROJECTS AND RESPECTIVE CRASH REDUCTION FACTORS

			CR	ASH RED	UCTION	FACTORS	5 (%)		
CRASH TYPE	REF-1	REF-10	REF-15	REF-17	REF-20	REF-21	REF-25	REF-26	REF-31
HEAD ON									
REAR END									
RIGHT ANGLE	75								
RUN OFF ROAD									
SIDE SWIPE	75								
PEDESTRIAN									
PDO									
INJURY									
FATALITY									
ALL	75	25	10	10	10	10	10	10	10

Table A. 1: Crash Reduction Factors For Adding Acceleration / Deceleration Lane

Table A. 2: Crash Reduction Factors For Adding All-Red Interval

CRASH TYPE		CRASH	I REDUCT	TION FACT	FORS (%)	
	REF-11	REF-15	REF-17	REF-20	REF-25	REF-30
HEAD ON						
REAR END	1-30			30		
RIGHT ANGLE						
RUN OFF ROAD						
SIDE SWIPE						
RIGHT TURN						
PDO						
INJURY						
FATALITY						
ALL	4-31	15	15MI	15	30	15

	CRASH REDUCTION FACTORS (%)										
DEE 15					REF-31						
KEF-13	КЕГ-1/	КЕГ-20	КЕГ-20	КЕГ-30	КЕГ-31						
35	30	35	30	35	65						
	REF-15	REF-15 REF-17	REF-15 REF-17 REF-20 Image: Constraint of the second state of the secon	REF-15 REF-17 REF-20 REF-26 Image: Participation of the strength of the strengt of the strength of the strength of the strength of the strengt o							

Table A. 3: Crash Reduction Factors For Adding Centerline Markings

Table A. 4: Crash Reduction Factors For Adding Edge Line Markings

			CR	ASH RED	UCTION F	ACTORS	(%)		
CRASH TYPE	REF-3	REF-10	REF-15	REF-17	REF-20	REF-23	REF-24	REF-26	REF-31
HEAD ON						50	45		
REAR END									
RIGHT ANGLE									
RUN OFF ROAD						50	45		
PEDESTRIAN	30		30		30				
RIGHT TURN						59	66		
PDO									
INJURY					8				
FATALITY					15				
ALL	30	4	15	15	15	38	44	15	25

CRASH TYPE				(CRASH RE	DUCTION	FACTOR	S (%)			
	REF-3	REF-11	REF-15	REF-17	REF-20	REF-21	REF-23	REF-24	REF-25	REF-31	REF-30
HEAD ON							35	27			
REAR END							56	54			
RIGHT ANGLE	80										
RUN OFF ROAD											
SIDE SWIPE	35	63-70	70	85	70		46	41	70		
PEDESTRIAN							35	27			
PDO											
INJURY											
FATALITY											
ALL	15	23-48	25	25	25	30	36	30	25	25	25

Table A. 5: Crash Reduction Factors For	Adding Exclusive Left-Turn Phase (Protected)
---	--

			CR	ASH RED	UCTION F									
CRASH TYPE	REF-3	REF-13	REF-10	REF-20	REF-21	REF-23	REF-24	REF-17	REF-15	REF-12	REF-25	REF-31	REF-18	REF-19
HEAD ON	53			53		44							97	38
REAR END	32			32		52	42						53	53
RIGHT ANGLE						45	35						15	46
RUN OFF ROAD	44			44									26	50
SIDE SWIPE									50			24	71	67
PEDESTRIAN														
PDO				27										
INJURY				23										
FATALITY				39										
ALL	25	25	10	25	20	31	20	30	25	24-42	25	41		

Table A. 6: Crash Reduction Factors For Adding Lane General

	CRASH REDUCTION FACTORS (%)								
CRASH TYPE	REF-3	REF-10	REF-20	REF-32	REF-15	REF-17	REF-11		
HEAD ON									
REAR END									
RIGHT ANGLE	13		20						
RUN OFF ROAD									
SIDE SWIPE									
RIGHT TURN	10								
PDO	12		20						
INJURY									
FATALITY									
ALL	11	4	10	16	10	5	6-13		

Table A. 7: Crash Reduction Factors For Adding Reflectorized Raised Pavement Markings

\

Table A. 8: Crash Reduction Factors For Adding Right Turn Lane

	CRASH REDUCTION FACTORS (%)									
CRASH TYPE	REF-15	REF-20	REF-21	REF-26	REF-12	REF-17	REF-5			
HEAD ON										
REAR END						65				
RIGHT ANGLE				50						
RUN OFF ROAD										
SIDE SWIPE						20				
RIGHT TURN	50	50				56				
PDO										
INJURY										
FATALITY										
ALL	25	25	25	25	14-27		30			

	CRASH REDUCTION FACTORS (%)									
CRASH TYPE	REF-18	REF-19	REF-20	REF-15	REF-31	REF-26	REF-23	REF-27		
HEAD ON	67									
REAR END		16								
RIGHT ANGLE	73	62								
RUN OFF ROAD	40	54								
SIDE SWIPE	33	83								
LEFT TURN	67	79								
PDO										
INJURY								50		
FATALITY										
ALL			35	35	50	35	26			

Table A. 9: Crash Reduction Factors For Advance Warning Signs And FlashingBeacon

 Table A. 10: Crash Reduction Factors For Attaining Progression

	CRASH REDUCTION FACTORS (%)							
CRASH TYPE	REF-15	REF-30	REF-31	REF-25	REF-11			
HEAD ON								
REAR END					25-38			
RIGHT ANGLE								
RUN OFF ROAD								
SIDE SWIPE								
LEFT TURN								
PDO								
INJURY								
FATALITY								
ALL	15	10	10	15	15-17			

	CRASH REDUCTION FACTORS (%)									
CRASH TYPE	REF-23	REF-24	REF-25	REF-30	REF-17	REF-15	REF-31			
HEAD ON	26	53								
REAR END	32	41								
RIGHT ANGLE	26	53								
RUN OFF ROAD										
SIDE SWIPE	30									
LEFT TURN										
PDO	60	81								
INJURY										
FATALITY										
ALL	28	39	20	20	20	22	22			

Table A. 11: Crash Reduction Factors For Change In Signal Operation,From Pre-Timed To Traffic Actuated

Table A. 12: Crash Reduction Factors For Change To All-Way Stop Sign
From Two-Way Stop Sign

	CRASH REDUCTION FACTORS (%)									
CRASH TYPE	REF-5	REF-15	REF-20	REF-21	REF-17	REF-11	REF-31	REF-23	REF-30	
HEAD ON			13							
REAR END			72			84				
RIGHT ANGLE										
RUN OFF ROAD										
SIDE SWIPE			20							
LEFT TURN			39							
PDO										
INJURY										
FATALITY										
	50	55	55	53	50	53-74	20	73	50	
ALL										

Table A. 13: CRASH REDUCTION FACTORS FOR CHANNELIZATIONINTERSECTION

		CRASH REDUCTION FACTORS (%)									
CRASH TYPE	REF-10	REF-17	REF-20	REF-21	REF-26	REF-23	REF-24	REF-25	REF-18	REF-19	
HEAD ON									25	50	
REAR END						30	53				
RIGHT ANGLE						58	48				
RUN OFF ROAD											
SIDE SWIPE									28		
LEFT TURN			45								
								-			
PDO											
INJURY											
FATALITY											
ALL	17	25	25	27	25	37	35	25			

Table A. 14: Crash Reduction Factors For Construct Interchange

	CR	CRASH REDUCTION FACTORS (%)										
CRASH TYPE	REF-1	REF-15	REF-17	REF-20	REF-31							
HEAD ON												
REAR END												
RIGHT ANGLE												
RUN OFF ROAD												
SIDE SWIPE												
PEDESTRIAN												
PDO												
INJURY												
FATALITY												
ALL	60	55	40	55	55							

		CRASH REDUCTION FACTORS (%)										
CRASH TYPE	REF-13	REF-15	REF-21	REF-23	REF-24	REF-26	REF-17					
HEAD ON												
REAR END												
RIGHT ANGLE												
RUN OFF ROAD												
SIDESWIPE												
LEFT TURN				62	62							
PDO												
INJURY												
FATALITY												
ALL	25	30	32	45	43	30	15					

 Table A. 15.Crash Reduction Factors For Flatten Side-Slope (General)

 Table A. 16: Crash Reduction Factors For Flatter Grade (Vertical Curve)

	CRASI	H REDUC	ΓΙΟΝ FAC	TORS (%)
CRASH TYPE	REF-3	REF-21	REF-31	REF-26
HEAD ON				
REAR END				
RIGHT ANGLE				
RUN OFF ROAD	30			
SIDE SWIPE				
LEFT TURN				
PDO	20			
INJURY	15			
FATALITY	30			
ALL	40	32	46	30

	CRASH	CRASH REDUCTION FACTORS (%)										
CRASH TYPE	REF-13	REF-23	REF-24	REF-33								
HEAD ON		64	67									
REAR END		24	73									
FIXED OBJECT		87	68									
RUN OFF ROAD												
SIDE SWIPE												
LEFT TURN												
PDO				87								
INJURY				87								
FATALITY				87								
ALL	35	41	59									

Table A. 17. Crash Reduction Factors For Horozonal Alignment Changes (General)

 Table A. 18: Crash Reduction Factors For Improvement Horizontal And Vertical

 ~

Curve

		CR	ASH RED	UCTION F	ACTORS	(%)	
CRASH TYPE	REF-5	REF-13	REF-15	REF-20	REF-17	REF-23	REF-30
HEAD ON							
REAR END							
FIXED OBJECT							
RUN OFF ROAD							
SIDE SWIPE							
LEFT TURN							
PDO							
INJURY							
FATALITY							
ALL	50	73	50	50	50	21	50

		CRASH REDUCTION FACTORS (%)									
CRASH TYPE	REF-15	REF-20	REF-17	REF-23	REF-25	REF-300	REF-11				
HEAD ON											
REAR END											
RIGHT ANGLE											
RUN OFF ROAD											
SIDE SWIPE											
PEDESTRIAN											
PDO											
INJURY											
FATALITY											
ALL	10	10	10	19	10	10	10-15				

Table A. 19: Crash Reduction Factors For Improvement Of Signal Timing (General)

Table A. 20: Crash Reduction Factors For Improvement Of Vertical Alignment

(General)

	CRASH	CRASH REDUCTION FACTORS (%)										
CRASH TYPE	REF-17	REF-15	REF-30	REF-33								
HEAD ON												
REAR END												
FIXED OBJECT												
RUN OFF ROAD												
SIDE SWIPE												
LEFT TURN												
PDO				87								
INJURY				87								
FATALITY				83								
ALL	45	40	40									

		CRASH	REDUCTI	ON FACT	ORS (%)	
CRASH TYPE	REF-15	REF-20	REF-17	REF-30	REF-25	REF-12
HEAD ON						
REAR END	30	30			30	4-31
RIGHT ANGLE						
RUN OFF ROAD						
SIDE SWIPE						
RIGHT TURN						
PDO						
INJURY						
FATALITY						
ALL	15	15	15	15	15	

 Table A. 21: Crash Reduction Factors For Improvement Of Yellow Change

 Interval

 Table A. 22: Crash Reduction Factors For Improving Pavement Condition

		CRASH REDUCTION FACTORS (%)									
CRASH TYPE	REF-13	REF-5	REF-15	REF-20	REF-23	REF-24	REF-17	REF-30	REF-25	REF-11	
WET PAVEMENT			60	60	54	64	55			42-75	
OVER TURN					35	54					
RIGHT ANGLE											
RUN OFF ROAD					40	41					
SIDE SWIPE											
FIXED OBJECT					19	30					
PDO											
INJURY											
FATALITY											
ALL	14	10	25	25	21	37	15	25	14		

		CRASH REDUCTION FACTORS (%)										
CRASH TYPE	REF-15	REF-20	REF-13			REF-23		Ì	ŕ	REF-2	REF-18	REF-19
HEAD ON										10		
REAR END		21								21		70
RIGHT ANGLE												
RUN OFF ROAD											100	100
SIDE SWIPE		10			75							
LEFT TURN		13								13		
PDO		10			75						100	
INJURY												
FATALITY												
ALL	30	30	35	30	75	31	45	32	20	7		

Table A. 23. Crash Reduction Factors For Improving Sight Distance

Table A. 24: Crash Reduction Factors For Increase In Lane Width

					SH RED	ICTION	EACTO	DS (04)			
CRASH TYPE											
CRASHTYPE	REF-3	REF-33	REF-17	REF-31	REF-20	REF-23	REF-5	REF-15	REF-21	REF-30	REF-25
HEAD ON	70		5								
REAR END											
RIGHT ANGLE											
RUN OFF ROAD	49										
SIDE SWIPE	52		5								
LEFT TURN						69					
PDO		50									25
INJURY		50									15
FATALITY		50									40
ALL	56			12	25	17	20	20	32	15	28

		CR	ASH RED	UCTION F	ACTORS	(%)	
CRASH TYPE	REF-15	REF-20	REF-21	REF-23	REF-26	REF-24	REF-11
HEAD ON							
REAR END							
RIGHT ANGLE							
RUN OFF ROAD							
SIDE SWIPE							
LEFT TURN							
PDO							
INJURY							
FATALITY							
ALL	15	15	40	40	15	24	15-30

 Table A. 25: Crash Reduction Factors For Increase Turn Lane Length

Table A. 26: Crash Reduction Factors For Increase Turning Radius

lr	1						
		CR	ASH RED	UCTION F	ACTORS	(%)	
CRASH TYPE	REF-15	REF-20	REF-21	REF-17	REF-30	REF-25	REF-12
HEAD ON							
REAR END				15			
RIGHT ANGLE							
RUN OFF ROAD							
SIDE SWIPE				15			
PEDESTRIAN							
PDO							
INJURY							
FATALITY							
ALL	15	15	10	15	15	15	15-21

		CRASH	REDUCTI	ON FACT	ORS (%)	
CRASH TYPE	REF-15	REF-20	REF-26	REF-17	REF-30	REF-11
HEAD ON						
REAR END						48
RIGHT ANGLE						
RUN OFF ROAD						
SIDE SWIPE						
LEFT TURN						
PDO						
INJURY						
FATALITY						
ALL	10	10	10	10	10	10-12

Table A. 27: Crash Reduction Factors For Installation Of 12-Inch Lenses

Table A. 28: Crash Reduction Factors For Installation Of Guardrail AtBridge

		CRASH	REDUCTI	ON FACT	ORS (%)	
CRASH TYPE	REF-21	REF-23	REF-24	REF-13	REF-3	REF-20
HEAD ON						
REAR END		32	37			
RIGHT ANGLE						
RUN OFF ROAD						
SIDE SWIPE						
PEDESTRIAN						
PDO						
INJURY						45
FATALITY						90
ALL	44	20	22	24	11	

IT										
				CRASH	REDUCTI	ON FACT	ORS (%)			
CRASH TYPE	REF-3	REF-5	REF-20	REF-23	REF-24	REF-26	REF-15	REF-11	REF-30	REF-31
HEAD ON										
REAR END										
RIGHT ANGLE				54	58					
RUN OFF ROAD	35		35							
SIDE SWIPE										
PEDESTRIAN								68		
PDO										
INJURY			65							
FATALITY			40							
ALL	36	20	5	19	19	15	25	25	25	25

Table A. 29: Crash Reduction Factors For Install Median Barrier (General)

	CRASH	REDUCTI	ON FACT	ORS (%)
CRASH TYPE	REF-15	REF-20	REF-25	REF-11
HEAD ON		10		
REAR END		10		
RIGHT ANGLE		10		
RUN OFF ROAD				
SIDE SWIPE				
LEFT TURN				
PDO		20		
INJURY				
FATALITY				
ALL	15	15	20	15-18

 Table A. 30: Crash Reduction Factors For Installation Of Optically

 Programmed Signal Lenses

_

Table A. 31: Crash Reduction Factors For Installation Of Rumble Strips

			CRASH R	EDUCTIO	N FACTOR	RS (%)		
CRASH TYPE	REF-3	REF-15	REF-20	REF-21	REF-18	REF-19	REF-1	REF-5
HEAD ON	80				75	100		
REAR END					50			
RIGHT ANGLE					54	47		
RUN OFF ROAD	54					50	50	50
SIDESWIPE					100			
LEFT TURN					33	60		
PDO								
INJURY								
FATALITY								
	53	25	25	18				
ALL								

	CR	ASH RED	UCTION F	ACTORS	(%)
CRASH TYPE	REF-15	REF-26	REF-20	REF-21	REF-31
HEAD ON					
REAR END					
RIGHT ANGLE					
RUN OFF ROAD					
SIDE SWIPE					
RIGHT TURN					
PDO					
INJURY					
FATALITY					
ALL	15	15	15	20	20

Table A. 32: Crash Reduction Factors For Installation Of School Zone Signs

						CRASH	REDUCTI	ON FACT	ORS (%)					
CRASH TYPE	REF-5	REF-13	REF-10	REF-15	REF-20	REF-26	REF-23	REF-24	REF-17	REF-30	REF-25	REF-11	REF-18	REF-19
HEAD ON													97	38
REAR END							20	22						
RIGHT ANGLE				65	65	65	43	74			65		60	42
RUN OFF ROAD							20	22						
SIDE SWIPE														
LEFT TURN														
PDO											23	36		
INJURY											23	29)		
FATALITY														
ALL	15	20	13	25	25	20	20	38	20	20	22	45)		

Table A. 33: Crash Reduction Factors For Installation Of Signal (General)

		CRASH	REDUCTI	ON FACT	ORS (%)	
CRASH TYPE	REF-23	REF-17	REF-15	REF-25	REF-31	REF-30
HEAD ON						
REAR END						
RIGHT ANGLE						
RUN OFF ROAD						
SIDE SWIPE						
RIGHT TURN						
PDO						
INJURY						
FATALITY						
ALL	15	30	30	300	20	30

 Table A. 34: Crash Reduction Factors For Installation Of Stop Ahead Sign

						CRAS	SH REDUC	TION FAC	CTORS (%))				
CRASH TYPE	REF-5	REF-15	REF-20	REF-26	REF-21		REF-23	REF-17	REF-11	REF-30	REF-31	REF-25	REF-18	REF-19
HEAD ON														
REAR END			36			36							32	32
RIGHT ANGLE								20					31	23
RUN OFF ROAD														
SIDE SWIPE													32	37
LEFT TURN			33			33							17	38
PDO			35											
INJURY			20											
FATALITY														
ALL	25	30	35	25	34	30	24	30	30-40	35	40	30		

Table A. 35: Crash Reduction Factors For Installation Of Two-Way Left-Turn Lane In Median

	CI	RASH RE	DUCTIC	ON FAC	FORS (%)	
CRASH TYPE	REF-15	REF-20	REF-26	REF-17	REF-30	REF-31
HEAD ON						
REAR END						
RIGHT ANGLE						
RUN OFF ROAD						
SIDESWIPE						
LEFT TURN						
PDO						
INJURY						
FATALITY						
ALL	15	15	15	15	15	20

Table A. 36: Crash Reduction Factors For Installation Of Variable MessageSign

Table A. 37: Crash Reduction Factors For Installation Of Visors Or Back-Plates

	CR	ASH RED	UCTION F	FACTORS	(%)
CRASH TYPE	REF-15	REF-30	REF-11	REF-20	REF-25
HEAD ON					
REAR END	20		7-93	20	20
RIGHT ANGLE					
RUN OFF ROAD					
SIDE SWIPE					
LEFT TURN					
			-		-
PDO					
INJURY					
FATALITY					
ALL	20	20	2-24		

			CRASH	REDUCTI	ON FACT	ORS (%)		
CRASH TYPE	REF-20	REF-21	REF-13	REF-17	REF-23	REF-15	REF-31	REF-30
HEAD ON								
REAR END								
RIGHT ANGLE								
RUN OFF ROAD								
SIDE SWIPE								
RIGHT TURN	30					30		
PDO	29							
INJURY	20							
FATALITY	55							
ALL	30	23	29	30	54	30	20	30

Table A. 38: Crash Reduction Factors For Installation Of Warning SignsIn Advance Of Curves

Table A. 39: Crash Reduction Factors For Installation Of Yield Sign

	CR	ASH RED	UCTION F	ACTORS	(%)
CRASH TYPE	REF-20	REF-1	REF-23	REF-17	REF-2
HEAD ON					
REAR END					43
RIGHT ANGLE					
RUN OFF ROAD					
SIDE SWIPE					
LEFT TURN					
PDO					
INJURY					
FATALITY					
ALL	45	25	23	50	

		CRAS	SH REDUC	TION FAC	TORS (%)	
CRASH TYPE	REF-3	REF-5	REF-10	REF-23	REF-24	REF-26
HEAD ON						
REAR END						
RIGHT ANGLE						
RUN OFF ROAD	100					
SIDE SWIPE						
LEFT TURN				24	34	
PDO						
INJURY						
FATALITY						
ALL	10	5	15	13	28	20

 Table A. 40: Crash Reduction Factors For Installation Of Proper Signs

Table A. 41: Crash Reduction Factors For Installation Of Improvement Roadway
Lighting

		CRA	SH REDU	CTION FA	ACTORS (%	b)	
CRASH TYPE	REF-13	REF-15	REF-20	REF-17	REF-11	REF-26	REF-1
HEAD ON							
REAR END							
RIGHT ANGLE							
RUN OFF ROAD							
SIDESWIPE							
NIGHT TIME CRASHES		45	45	50	42-50	45	20
PDO							
INJURY							
FATALITY							
	20	25	25	25	25-50		
ALL							

		CRASH REDUCTION FACTORS (%)										
CRASH TYPE	REF-3	REF-5	REF-21	REF-20	REF-23	REF-26	REF-15	REF-11	REF-30	REF-31	REF-1	REF-24
HEAD ON											75	
REAR END												
RIGHT ANGLE					54							58
RUN OFF ROAD	35			35								
SIDE SWIPE												
LEFT TURN												
PDO												
INJURY				40								
FATALITY				65								
ALL	36	20	25	5	19	15	25	25	25	25		19

Table A. 42: Crash Reduction Factors For Installation Of Raised Median Near Intersection

Table A. 43: Crash Reduction Factors For Installation Of Red Light Running Cameras And Its Warnings Signs

	CRASH	I REDUCTI	ON FACTO	RS (%)
CRASH TYPE	REF-22	REF-31	REF-33	REF-12
HEAD ON				
REAR END				
RIGHT ANGLE	16			
RUN OFF ROAD				
SIDE SWIPE				
LEFT TURN				
PDO				
INJURY	16	29	20-33	
FATALITY				
ALL	9	32	24-33	20-30

		CRAS	H REDUC	TION FA	CTORS	(%)	
CRASH TYPE	REF-23	REF-24	REF-30	REF-26	REF-17	REF-15	REF-31
HEAD ON	60	81					
REAR END	26	53					
RIGHT ANGLE	32	41					
RUN OFF ROAD							
SIDE SWIPE	26	53					
LEFT TURN	30						
PDO							
INJURY							
FATALITY							
ALL	28	39	20	25	20	22	22

Table A. 44: Crash Reduction Factors For Installation Of Actuated Signal Control

Table A. 45: Crash Reduction Factors For Intersection Lighting

		C	CRASH RE	DUCTIO	N FACTO	RS (%)		
CRASH TYPE	REF-15	REF-5	REF-20	REF-17	REF-24	REF-30	REF-11	REF-31
HEAD ON								
REAR END								
RIGHT ANGLE								
RUN OFF ROAD								
SIDE SWIPE								
NIGHT TIME	50	67	50	55			10-70	75
PDO								
INJURY								
FATALITY								
ALL	30	36	30	25	36	30	19-75	

		CRASH REDUCTION FACTORS (%)											
CRASH TYPE	REF-15	REF-20	REF-21	REF-17	REF-25	REF-23	REF-24	REF-31	REF-11	REF-2	REF-30		
HEAD ON													
REAR END						35	27						
RIGHT ANGLE						56	54						
RUN OFF ROAD													
SIDE SWIPE													
LEFT TURN	70	70		85	70	46	41		63-70	35			
PDO													
INJURY													
FATALITY													
ALL	25	25	30	25	25	36	30	25	23-48	15	25		

Table A. 46: Crash Reduction Factors For Left Turn Protected Only From Protected/Permissive

		CRASH	REDUCT	ION FACT	ORS (%)	
CRASH TYPE	REF-15	REF-20	REF-30	REF-18	REF-19	REF-26
HEAD ON				75		
REAR END					17	
RIGHT ANGLE				30	46	
RUN OFF ROAD				62	28	
SIDE SWIPE						
LEFT TURN				55	63	75
PDO						
INJURY						
FATALITY						
ALL	25	25	25			

 Table A. 47: Crash Reduction Factors For Modification In Signal Phasing

Table A. 48: Crash Reduction Factors For Modification Of Entrance / Exit Ramp

	CR	CRASH REDUCTION FACTORS (%)							
CRASH TYPE	REF-15	REF-20	REF-17	REF-23	REF-21				
HEAD ON									
REAR END									
RIGHT ANGLE									
RUN OFF ROAD									
SIDE SWIPE									
PEDESTRIAN									
PDO									
INJURY									
FATALITY									
ALL	25	25	25	25	40				

	CRASH REDUCTION FACTORS (%)						
CRASH TYPE	REF-15	REF-23	REF-30				
HEAD ON							
REAR END							
RIGHT TURN							
RUN OFF ROAD							
SIDE SWIPE							
LEFT TURN							
PDO							
INJURY							
FATALITY							
ALL	25	24	25				

 Table A. 49: Crash Reduction Factors For Offset Opposing Left Turn Lane

 Table A. 50: Crash Reduction Factors For Pavement Markings

		CRASH REDUCTION FACTORS (%)								
CRASH TYPE	REF-3	REF-5	REF-20	REF-15	REF-21	REF-26	REF-13			
HEAD ON										
REAR END	58									
RIGHT ANGLE										
RUN OFF ROAD	22									
SIDE SWIPE										
LEFT TURN										
PDO										
INJURY										
FATALITY										
ALL	48	5	13	15	20	35	25			

		CRASH REDUCTION FACTORS (%)							
CRASH TYPE	REF-25	REF-31	REF-15	REF-17	REF-30	REF-20			
HEAD ON									
REAR END						30			
RIGHT ANGLE									
RUN OFF ROAD									
SIDE SWIPE									
LEFT TURN						90			
PDO									
INJURY									
FATALITY									
ALL	40	40	45	40	45	45			

 Table A. 51: Crash Reduction Factors For Prohibiting Left Turns

		CRASH REDUCTION FACTORS (%)							
CRASH TYPE	REF-15	REF-20	REF-10	REF-17	REF-11	REF-23	REF-24	REF-31	REF-25
HEAD ON									
REAR END		10							
RIGHT ANGLE		10							
RUN OFF ROAD									
SIDE SWIPE		30							
FIXED OBJECT		40							
PDO									
INJURY									
FATALITY									
ALL	35	35	8	30	8-90	32	30	32	35

Table A. 52: Crash Reduction Factors For Prohibiting On Street Parking

	CRASH REDUCTION FACTORS (%)							
CRASH TYPE	REF-15	REF-30	REF-11	REF-20				
HEAD ON								
REAR END				30				
RIGHT ANGLE				20				
RUN OFF ROAD				30				
SIDE SWIPE				30				
LEFT TURN								
PDO								
INJURY								
FATALITY								
ALL	45	45	20-25					

 Table A. 53: Crash Reduction Factors For Prohibiting Right Turn On Red

Table A. 54: Crash Reduction Factors For Protected Permissive Left Turn Phase
Addition

	CI	CRASH REDUCTION FACTORS (%)							
CRASH TYPE	REF-15	REF-20	REF-17	REF-11	REF-26				
HEAD ON									
REAR END									
RIGHT ANGLE									
RUN OFF ROAD									
SIDESWIPE									
LEFT TURN	40	40	40	40-64	40				
PDO									
INJURY									
FATALITY									
ALL	10	10	10	4-10					

		CRASH REDUCTION FACTORS (%)								
CRASH TYPE	REF-15	REF-20	REF-21	REF-26	REF-24	REF-17	REF-11			
HEAD ON										
REAR END					79					
RIGHT TURN	45	50		45	24					
RUN OFF ROAD										
SIDE SWIPE										
LEFT TURN										
PDO										
INJURY										
FATALITY										
ALL	25	25	28	30	19	30	28-42			

Table A. 55: Crash Reduction Factors For Provide Left-Turn Lane (With Signal)

Table A. 56: Crash Reduction Factors For Provide Left-Turn Lane (Without Signal)

		CRASH REDUCTION FACTORS (%)							
CRASH TYPE	REF-5	REF-15	REF-20	REF-21	REF-26	REF-24	REF-17	REF-11	
HEAD ON									
REAR END									
RIGHT TURN									
RUN OFF ROAD									
SIDE SWIPE		50			55	35			
LEFT TURN									
PDO									
INJURY									
FATALITY									
ALL	35	35	35	25	40	45	30	25-41	

	CRASH REDUCTION FACTORS (%)						
CRASH TYPE	REF-5	REF-17	REF-15	REF-30			
HEAD ON							
REAR END							
RIGHT ANGLE							
RUN OFF ROAD							
SIDE SWIPE							
LEFT TURN							
PDO							
INJURY							
FATALITY							
ALL	50	40	40	40			

 Table A. 57: Crash Reduction Factors For Realignment (General)

 Table A. 58: Crash Reduction Factors For Reconstruction Curve

	CR	CRASH REDUCTION FACTORS (%)							
CRASH TYPE	REF-17	REF-15	REF-11	REF-31	REF-30				
HEAD ON									
REAR END									
RIGHT ANGLE									
RUN OFF ROAD									
SIDE SWIPE									
LEFT TURN									
PDO									
INJURY									
FATALITY									
ALL	50	40	40-50	50	45				

Γ	GR		LIGTION		(0)						
		CRASH REDUCTION FACTORS (%)									
CRASH TYPE	REF-15	REF-20	REF-21	REF-30	REF-25						
HEAD ON											
REAR END											
RIGHT ANGLE											
RUN OFF ROAD											
SIDE SWIPE											
LEFT TURN											
PDO		35			35						
INJURY											
FATALITY											
ALL	20	20	36	20	20						

 Table A. 59: Crash Reduction Factors For Reduction In Speed Limit

Table A. 60: Crash Reduction Factors For Relocating Fixed Objects

	CF	RASH REE	UCTION	FACTORS	(%)
CRASH TYPE	REF-15	REF-20	REF-17	REF-26	REF-1
HEAD ON					
REAR END					
RIGHT ANGLE					
RUN OFF ROAD					
SIDESWIPE					
LEFT TURN					
PDO					90
INJURY	25	25	15		
FATALITY	40	40	40		
ALL	25	25	55	25	

	CR		EDUCTI DRS (%)	
CRASH TYPE	REF-26	REF-17	REF-31	REF-33
HEAD ON				
REAR END				
RIGHT ANGLE				
RUN OFF ROAD				
SIDE SWIPE				
LEFT TURN				
PDO				
INJURY				
FATALITY				
ALL	50	33	45	48

 Table A. 61: Crash Reduction Factors For Relocating Some Drive Ways

Y												
		CRASH REDUCTION FACTORS (%)										
CRASH TYPE	REF-3	REF-5	REF-15	REF-20	REF-21	REF-23	REF-24	REF-26	REF-17	REF-25	REF-1	
HEAD ON												
REAR END						44	42					
RIGHT ANGLE												
RUN OFF ROAD												
SIDESWIPE												
LEFT TURN									75		100	
PDO												
INJURY			30	30					15	20		
FATALITY			50	50					50	66		
ALL	61	20	30	30	30	17	18	25				

Table A. 62: Crash Reduction Factors For Removing Fixed Objects

		CRASH REDUCTION FACTORS (%)									
CRASH TYPE	REF-3	REF-15	REF-20	REF-26	REF-25	REF-30	REF-11				
HEAD ON											
REAR END											
RIGHT ANGLE											
RUN OFF ROAD											
SIDE SWIPE											
RIGHT TURN	100		90								
PDO											
INJURY											
FATALITY											
ALL	50	50	50	75	50	55	50-53				

 Table A. 63: Crash Reduction Factors For Removing Unwarranted Signal

 Table A. 64: Crash Reduction Factors For Roundabout

			CRASH	REDUCTI	ON FACTO	ORS (%)		
CRASH TYPE	REF-22	REF-14	REF-2	REF-24	REF-16	REF-8	REF-29	REF-27
HEAD ON								
REAR END								
RIGHT ANGLE								
RUN OFF ROAD								
SIDE SWIPE								
PEDESTRIAN			10					
PDO						29		
INJURY	80		75	75	83	51	56	74
FATALITY			90	90			100	
ALL	40	76		39	64	37	70	35

	CI	CRASH REDUCTION FACTORS (%)									
CRASH TYPE	REF-15	REF-30	REF-31	REF-25	REF-11						
HEAD ON											
REAR END											
RIGHT ANGLE											
RUN OFF ROAD											
SIDE SWIPE											
RIGHT TURN											
PDO											
INJURY											
FATALITY											
ALL	15	10	10	15	15-17						

 Table A. 65: Crash Reduction Factors For Signal Progression (General)

 Table A. 66: Crash Reduction Factors For Skid Treatment With Overlay

	CRASH	REDUCTI	ON FACT	ORS (%)
CRASH TYPE	REF-23	REF-24	REF-18	REF-19
HEAD ON			12	21
REAR END	23	23)	11	31
RIGHT ANGLE	61	43	12	27
RUN OFF ROAD				
SIDE SWIPE			41	34
RIGHT TURN			34	43
PDO	61	43	19	30
INJURY				
FATALITY				
ALL	20	13		

Table A.	67: C	rash Red	uction Facto	ors For Sup	erelevation	Correction
----------	-------	----------	--------------	-------------	-------------	------------

		CRASH REDUCTION FACTORS (%)								
CRASH TYPE	REF-15	REF-26	REF-17	REF-31	REF-30	REF-20				
HEAD ON										
REAR END										
FIXED OBJECT										
RUN OFF ROAD						50				
SIDE SWIPE										
LEFT TURN										
PDO										
INJURY										
FATALITY										
ALL	40	40	40	65	40					

 Table A. 68: Crash Reduction Factors For Upgradation Of Guardrail

			CRASH	REDUCTI	ON FACT	ORS (%)		
CRASH TYPE	REF-3	REF-13	REF-10	REF-15	REF-20	REF-17	REF-23	REF-24
HEAD ON								
REAR END							27	41
RIGHT ANGLE								
RUN OFF ROAD	26				26		32	
SIDE SWIPE								
PEDESTRIAN								
PDO								
INJURY				40	40	35		
FATALITY				65	65	55		
	19	16	4	5	5		9-31	
ALL								

		CRASH REDUCTION FACTORS (%)												
CRASH TYPE	REF-5	REF-13	REF-10	REF-15	REF-20	REF-21	REF-23	REF-24	REF-26	REF-32	REF-17	REF-14	REF-18	REF-19
HEAD ON							52	32					47	61
REAR END							26	41				39-41	22	32
RIGHT ANGLE							37	47)				36-74	29	32
RUN OFF ROAD							26							
SIDE SWIPE							52	32					50	28
LEFT TURN							26	38				12-15	27	21
PDO												47-51		
INJURY														
FATALITY												31-34		
ALL	15	15	11	20	20	22	19	37	20	62	20	43-49		

Table A. 69: Crash Reduction Factors For Upgradation Of Signal

	CRASH REDUCTION FACTORS (%)											
CRASH TYPE	REF-11	REF-5	REF-15	REF-20	REF-21	REF-13	REF-26	REF-24	REF-23	REF-14	REF-18	REF-19
HEAD ON								32	57		47	61
REAR END								26	41	39-41	22	32
RIGHT ANGLE								37	47	36-74	29	32
RUN OFF ROAD											37	52
SIDE SWIPE								32	52		50	28
LEFT TURN								26	38	12-15	27	21
PDO										47-51		
INJURY										31-34		
FATALITY												
ALL	28-43	15	20	20	22	36	20	37	19	43-49		

 Table A. 70: Crash Reduction Factors For Upgrade Signals / Mast Arm Signal Installation

	CRASH REDUCTION FACTORS (%)										
CRASH TYPE	REF-5	REF-13	REF-3	REF-21	REF-17	REF-15	REF-23	REF-30	REF-31	REF-25	REF-33
HEAD ON			75		15						
REAR END											
RIGHT ANGLE											
RUN OFF ROAD			60								
SIDE SWIPE			41		15						
PEDESTRIAN											
PDO										12	50
INJURY										13	50
FATALITY										22	50
ALL	20	8	57	32	20	20	17	15	12	8	

Table A. 71: Crash Reduction Factors For Shoulder Widening

References:

- Alaska Department of Transportation and Public Facilities, "Highway Safety Improvement Program Handbook—Methodology for Identifying, Prioritizing and Evaluating Highway Safety Improvement Program Projects." 2002.
- 2. Arizona Department of Transportation "Study on Modern Roundabout", 2005
- Arizona Department of Transportation, "Accident Rate Reduction Levels, Which May Be Attainable From Various Safety Improvements." Traffic Engineering Section, Traffic Studies Branch, 1991.
- 4. Bhagwant N. Persaud B.N, Retting R.A, Garder P.E, Lord D "Crash Reductions Following Installation of Roundabouts in the United States", March 2000
- California Department of Transportation, "Highway Safety Improvement Program Guidelines." Accident Reduction Factors for Highway Safety Projects, 1998.
- Council, F. M., D. W. Reinfurt, B. J. Campbell, F. L. Roediger, C. L Carroll, K. D. Amitabh, and J. R. Dunham, "Accident Research Manual." Highway Safety Research Center, University of North Carolina, 1980.
- Ermer, Daniel; Fricker, John; Sinha, Kumares. "Accident Reduction Factors for Indiana." FHWA-IN-JHRP-91-11. Federal Highway Administration, Washington DC, May 1991.
- 8. FHWA" Roundabouts: An Informational Guide", (1999)
- Gan. A., "Update of Florida Crash Reduction Factors and Countermeasures to improve the Development of District Safety Improvement Projects". Final Report, April 2005. Lehman Center for Transportation Research. Florida International University.
- Indiana Department of Transportation, "Design Manual Part V Road Design, Volume II." July 1994.
- 11. Institute of Transportation Engineers (ITE). "Intersection Safety Toolbox", Draft Chapters, April 2004. <u>http://www.ite.org/safety/toolbox.asp</u>.
- 12. Institute of Transportation Engineers "Toolbox of Countermeasures and Their Potential Effectiveness to Make Intersections Safe." 2004
- 13. Iowa Department of Transportation, "Spot Location Improvements: Crash Reduction Factors." 2000.
- 14. Kansas Department of Transportation "Kansas Roundabout Guide: A supplement to FHWA's Roundabouts: An Informational Guide", 2000
- 15. Kentucky Department of Transportation "Development of Accident Reduction Factors", 1996
- 16. Maryland Department of Transportation "Traffic Safety Study of Roundabouts", 2005

- 17. Michigan Department of Transportation "Synthesis of Crash Reduction Factors", 1998
- Minnesota Department of Transportation, "Hazard Elimination Safety Program, Program Criteria, Submittal Procedures and Worksheet Materials." Traffic Engineering, Safety Department. (Fatal and Injury Crashes)
- Minnesota Department of Transportation, "Hazard Elimination Safety Program, Program Criteria, Submittal Procedures, and Worksheet Materials." Traffic Engineering, Safety Department. (Property Damage Only)
- 20. Missouri Department of Transportation, "Manual on Identification, Analysis, and Correction of High-Crash-Locations (the HAL Manual)." Technology Transfer Assistance Program, Department of Civil and Environmental Engineering, University of Missouri-Columbia, Third Edition, 1999.
- 21. Montana Department of Transportation, "Safety Engineering Improvement Program— Accident Reduction Factors." Safety Engineering Improvement Program.
- 22. National Cooperative Highway Research Program "Crash Reduction Factors For Traffic Engineering and Intelligent Transportation System (Its) Improvements: State-Of-Knowledge Report" Research Digest 299, Nov, 2005.
- 23. New York Department of Transportation, "Accident Reduction Factors." Traffic Engineering and Safety Division, Safety Program Management Bureau, 1995. (AADT > 5000 / LANE)
- 24. New York Department of Transportation, "Accident Reduction Factors." Traffic Engineering and Safety Division, Safety Program Management Bureau, 1995. (AADT<5000/LANE)</p>
- 25. North Carolina Department of Transportation (last updated March 2001)
 - Accident Reduction Factor, Signalized intersection crashes <u>http://www.doh.dot.state.nc.us/preconstruct/traffic/safety/project_guide/arf_sig_a_ngle.html</u>
 - b. Accident Reduction Factors, mid block section crashes. <u>http://www.doh.dot.state.nc.us/preconstruct/traffic/safety/project_guide.html</u>
 - c. Pedestrian Vehicle Crashes at Signalized Intersections. <u>http://www.doh.dot.state.nc.us/preconstruct/traffic/safety/project_guide/arf_sig_p_ed.html</u>
 - i. Roadway Design Manual. http://www.doh.dot.state.nc.us/preconstruct/highway/dsn_srvc/value/ma nuals/RD`M2001/part1/chapter9/pt1ch9.pdf
- 26. Oklahoma Department of Transportation, "Accident Reduction Factors."
- 27. Oregon Department of Transportation "Traffic Engineering and Operations Section
- 28. Oregon Department of Transportation, "Update and Enhancement of ODOT's Crash Reduction Factors", 2006.

- 29. Russel E. R "Roundabout Experiences in the U.S." September 2005
- 30. Southeast Michigan Council of Governments (SEMCOG) "Traffic Safety Manual" 1998
- 31. Texas Department of Transportation, "Traffic Accident Information and Hazard Elimination Program Volume." 2002.
- 32. Vermont Agency of Transportation "Crash Reduction Factors", Traffic Safety Unit.
- 33. Virginia Department of Transportation "Safety Action Plan", 2004

ACKNOWLEDGEMENT

The authors would like to acknowledge the assistance of many individuals at MODT during the course of this study. Particularly, the authors would like to express their gratitude to Gregory Krueger, Will Mathies for setting the directions for the study and for providing valuable suggestions in the development of the toolbox, and to Bob Rios and his associates for their assistance with database considered crucial for the study. The authors would also like to thank Michele R Muller for her assistance with traffic signal data.